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calculated bond length is obtained by adding the average 
effective ionic radii. In the NaCI structure there is only one 
type of bond, between octahedrally coordinated cations and 
anions and the difference Ax when plotted against the coef- 
ficient e (Fig. 2) results in a correlation coefficient equal to 
0-90. The equation of the straight line is 

= 42.6 + 139-5Ax. (2) 

Equation (1) emphasizes only the effect of radius ratio 
on the thermal expansion coefficient. Therefore, at large 
values of r+]r - when the anion-anion repulsion effect is 
small the equation is only approximately true. On the other 
hand, equation (2) represents the relation between two 
quantities both of which are likely to have been influenced 
by the same factors. The correlation coefficient between a 
and Ax is high and equation (2) may be useful in predicting 
the coefficient of expansion of an isomorphous alkali 
halide. The only such compound for which the thermal 
expansion data are not available in literature is RbF. The 
reported lattice parameter of this compound (Wyckoff, 
1963) gives the Rb-F  length as 2-82 A, identical with the 

calculated length. Equation (2) in this case predicts a value 
of the expansion coefficient as 42-6 x 10-6°C-k  

I thank Drs W. H. Baur and R. B. McCammon for useful 
discussions. 

References 

AHRENS, L. H. (1952). Geochim. Cosmochim. Acta, 2,155- 
169. 

DESHPANDE, V. T. (1955). PhD. Thesis, Osmania Univ. 
MEGAW, H. D. (1939). Z. Kristallogr. 100, 58-76. 
PAULING, L. (1928). Z. Kristallogr. 67, 377-404. 
PAULING, L. (1929). J. Amer. Chem. Soc. 51, 1010-1026. 
SHANNON, R. D. & PREWITT, C. T. (1969). Aeta Cryst. B25, 

925-946. 
SmDESHMUKH, D. B. (1963). PhD. thesis, Osmania Univ. 
SRINIVASAN, R. & KRISHNAN, K. S. (1958), Progress in 

Crystal Physics, Edited by R. S. KRISI-INAN. Madras:  
Viswanathan. 

WYcKovv, R. W. G. (1963). Crystal Structures, Vol. 1, pp. 
86-91. New York:  Interscience. 

Acta Cryst. (1974). A30, 106 

Elastic and thermoelastic properties of 1,3,5-triphenylbenzene derived from ultrasonic wave velocities. 
By S. HAUSS0HL, lnstitut fiir Kristallographie der Universitdt zu K6ln, Germany (BRD) 

(Received 6 July 1973; accepted 8 August 1973) 

All elastic and thermoelastic constants of orthorhombic triphenylbenzene single crystals have been deter- 
mined from diffraction of light by ultrasonic waves (Schaefer-Bergmann method). These measurements 
do not agree with the values previously reported by Suresh Chandra & Hemkar[Acta Cryst. (1973). A29, 
25-28] which were derived from thermal diffuse scattering of X-rays and which are not consistent with 
elastic-stability criteria. This is another example of the great difficulties which still have to be visualized 
in the quantitative interpretation of thermal-diffuse-scattering intensities by complicated crystal structures. 

Recently Suresh Chandra & Hemkar (1973) have published 
elastic constants of 1,3,5-triphenylbenzene (TPHB) which 
they had determined from thermal diffuse scattering of 
X-rays. A first inspection of these values will establish some 
doubt concerning the errors estimated by the authors be- 
cause two elastic-stability criteria are violated. The elastic 
compliance sn turns out to be negative ( - 2 . 4 3 8 5 .  10 -1~ 
cm3/erg) and also the bulk compressibility K = - 0.293. 10-1, 
cma/erg. As another peculiar feature of these values should 
be considered the relatively large shear constants c44 and e66. 
This means that in [010] transverse waves will propagate 
with higher velocities than longitudinal waves. Such 
behaviour is extremely rarely observed in crystals. The high 
elastic anisotropy in longitudinal and in transverse effects, 
and the large negative value for e12, also suggest a major 
failure in that investigation. 

A similar but less critical situation on benzalazine was 
clarified earlier (Haussahl, 1965). The constants determined 
from diffuse scattering of X-rays by Joshi & Kashyap (1964) 
differed much more from the constants derived by ultra- 
sonic measurements (Haussi.ihl, 1965) than expected from 
error estimation. In this paper the elastic constants of 
TPHB are derived from precision ultrasonic measurements 
in order to find the correct elastic behaviour of this material. 

By a thorough comparison of the two sets of constants it 
should be possible to disclose the major difficulties which 
still occur in the application of the models describing the 
diffuse scattering of X-rays in crystals. 

Single crystals of TPHB with dimensions of several Cln 
were grown from solutions of p-xylene by slow evaporation 
at about 33 °C. The transparent, pale-yellow crystals grow 
in an elongated prism {011} which is closed by another 
prism {120}. A few small faces of the types {010}, {001}, 
{110} are also formed. The axes of reference are chosen as 
given by Farag (1954). The crystals used here are metrically 
identical with the crystals described by Groth (1919) and 
by Farag. The density for 20 °C as measured by the buoyan- 
cy method is 1-205 g cm -a in good agreement with the X-ray 
value. 

From the determination of the elastic constants c~j the 
propagation velocities of ultrasonic waves travelling in the 
main directions [100], [010], [001], and in the three median 
directions of two main directions were measured employing 
the method of Schaefer-Bergmann (diffraction of light by 
ultrasonic waves) at about 15 MHz. The specimens were 
prepared as plane-parallel plates with dimensions of ca. 
10 mm. All measured values were controlled independently by 
observing the eigenfrequencies of such plates in a wider 
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frequency range. The same method yielded the temperature 
coefficients of all wave velocities in a temperature range 
from - 2 0  to 20°C. From these coefficients the thermo- 
elastic constants T~j = d log c~j/d T were derived. The values 
of thermal expansion necessary for correction of the thick- 
ness and density change of the crystals in that temperature 
interval were obtained with an optical dilatometer. The 
problem of sign ambiguity which occurs in evaluating the 
elastic constants c12, c13, and C2a was solved by some static 
measurements of Young's modulus and Poisson's ratio in 
some directions also employing the stability criteria which 
forbid negative values for su and K. 

All values are tabulated in Table 1. The probable errors 
are within the following limits: 

Table 1. Elastic constants cij, thermoelastic constants T~j 
and coefficients of thermal expansion et 

of  1,3,5-triphenylbenzene 

In brackets the values of Suresh Chandra & Hemkar (1973). 
Units: ctj in 10 It erg cm -a, Ttj in 10-3/°C, et in 10-6/°C. 

c~j for 20°C; Ttl and ~ for 0°C. 

C11 C22 e33 c12 c13 c23 

0"720 1.353 1"433 0"430 0"421 0"468 
(0"031) (0.136) (0"233) (-0.178) (0.092) (0"080) 

C44 e55 C66 ~ 1 0C2 63 
0"632 0"097 0"185 125 5 5 

(0.502) (0.034) (0.369) 

Tl1 T22 T33 T12 T13 T23 
--1"371 -1"504 -1.403 --1"37 -1"33 -2.65 

7'44 T55 7"66 
- 1 "08 - 0"09 - 0"75 

Cll , C22 , Ca3 : 0"3 % ; other ctg: 2 %. 
Tll, T22, Ta3:3 %; other Tti except T55: 10% 
For T55 the error limit may be larger. 

The large discrepancy between the older values published 
by Suresh Chandra & Hemka (see Table 1) and the values of 
this paper indicates that only some rough idea of the elastic 
anisotropy and the order of magnitude of the constants can 
be derived from thermal diffuse scattering of X-rays. In 
other cases the discrepancies were not of this magnitude. 
At the moment one cannot decide whether the experimental 
procedure of the authors was inadequate or whether the 
first-order approximation of X-ray scattering by phonons 
is insufficient. In molecular crystals, such as TPHB, a 
certain contribution to the background from thermal dif- 
fuse scattering by low-frequency internal molecular vibra- 
tions and librational movements should be expected. Still 
other perturbations may originate from stronger deviations 
of the ideal undisturbed lattice structure. 

The author is much indebted to Professor P. D. Garn for 
reading the manuscript. 

References 

FARAG, M. S. (1954). Acta Cryst. 7, 117-121. 
GROTH, P. (1919). Chemische Kristallographie V. Leipzig: 

Engelmann. 
HAUSS08L, S. (1965). Acta Cryst. 18, 980. 
JOSHt, S. K. & KASHYAP, B. M. S. (1964). Acta Cryst. 17, 

629-632. 
SURESH CHANDRA & HEMKAR, M. P. (1973). Acta Cryst. 

A29, 25-28. 

Acta Cryst. (1974). A30, 107 

C o n d i t i o n s  fo r  the  d i f f r ac t ion  e n h a n c e m e n t  o f  s y m m e t r y  o f  types  1 and  2. By TAK_EO MATSUMOTO and KUNIAKI 
KmARA, Department of Earth Sciences, Faculty of Science, Kanazawa University, Kanazawa 920, Japan and HITOSHI 
IWASAKI, The Institute of Physical and Chemical Research, Rikagaku Kenkyusho, Wako-shi, Saitama 351, Japan 

(Received 7 June 1973 ; accepted 18 July 1973) 

A re-examination of the conditions for the diffraction enhancement of symmetry for the structures of types 
1 and 2 [Iwasaki H. (1972). Acta Cryst. A28, 253-260] has brought out the existence of some additional 
solutions. The conditions for these types of structures have been systematically tabulated. 

Diffraction enhancement of symmetry, which means the 
appearance of a higher Laue symmetry than normally ex- 
pected, has been studied by several authors (Sadanaga & 
Takeda, 1968; Iwasaki, 1971, 1972; Marumo & Saito, 
1972: Ohsumi, Okamura & Sadanaga, 1972). In particular, 
Iwasaki (1972) has classified the structures into four types, 
and systematically investigated, using a general expression 
for the square of the structure amplitude, the necessary 
conditions of enhancement for each type of structure. By 
a re-examination of these conditions, we have come across 
some additional solutions of the equation (12) as given by 
Iwasaki (1972) for the case of the Laue symmetry 2/m, 
mmm, 4/m and 4/mmm of the structures of types 1 and 2, 
which are composed of substructures with the same space 
group. 

For  instance, the enhancement condition for monoclinic 
Laue symmetry 2/m, unique axis c [equation (18) in Iwasaki 
(1972)], is given by 

cos 2n(hup,~ + kvpa + lwp~) = cos 2n(hupq + kvpq- lwpq) (1) 

for any combination o f p  and q, where ups, vpq and wpq are 
the three components of the difference vector from the 
origin of the pth substructure to that of the qth substruc- 
ture, and hkl are the indices of a reflexion. By taking the 
origin of the crystal coincident with that of an arbitrarily 
chosen substructure, the solution of equation (1) can be 
written in the form 

(up,vp)=(O,O) or (0,½) or (½,0) or (½,½) 


